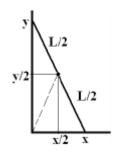
Задание 1

1. Стержень длина которого L=1 метр касается своими концами вертикальной стенки и горизонтального пола. Он движется, оставаясь всё время в одной и той же вертикальной плоскости, без отрыва от стенки и пола. В некоторый момент времени модуль скорости верхнего конца стержня равен 1 м/с, а нижнего конца — 2 м/с. Найдите модуль скорости середины стержня в этот момент, а также направление этой скорости относительно горизонтали. На какой высоте от пола находится в этот момент верхний конец стержня?

Максимум за задачу 10 баллов.

Возможное решение

Пусть x и y — расстояния от нижнего и верхнего концов стержня до вершины прямого угла, образуемого стенкой и полом. Тогда координаты середины стержня x/2 и y/2, а y/2 горизонтальная и вертикальная составляющая скорости середины стержня равны по модулю половинам модулей скоростей нижнего и верхнего концов стержня $u_x = 1$ м/с $u_y = 0.5$ м/с.



Модуль скорости середины стержня находится при помощи теоремы Пифагора $u=\sqrt{u_x^2+u_y^2}=\sqrt{1,25}$. Вектор скорости середины стержня расположен в плоскости движения стержня и направлен от стены и к полу. Для угла α , который этот вектор составляет с горизонталью, находим: $tg\alpha=\frac{u_y}{u_x}=0,5$, то есть $\alpha=arctg(0,5)$.

Найдём угол между стержнем и стенкой в рассматриваемый момент времени. Легко доказать, что середина стержня движется по окружности радиусом L/2. Этот радиус изображён на рисунке штриховой линией. Вектор скорости середины стержня перпендикулярен радиусу, и поэтому угол между стержнем и стенкой равен определённому выше углу α (тангенс этого угла можно найти из условия неизменности длины стержня - это альтернативный способ получения ответа для угла α).

Так как
$$H = Lcos\alpha$$
, то $H = \frac{2L}{\sqrt{5}} =$

Баллы	Правильность (ошибочность) решения		
10	Полное верное решение		
2	Координаты середины стержня связаны с координатами его концов		
2	Найдены скорости $u_x = 1$ м/с $u_y = 0.5$ м/с.		
2	Найдена скорость $u = \sqrt{u_x^2 + u_y^2} = \sqrt{1,25}$		
2	Найден угол $\alpha = arctg(0,5)$		
2	Найдена высота $H = \frac{2L}{\sqrt{5}}$		
0	Решение отсутствует		

Задание 2

Два школьника сидят в санках-ледянках, которые покоятся на гладкой горизонтальной поверхности замёрзшего озера, и держат в руках концы длинной невесомой нерастяжимой верёвки. Они начинают «выбирать» верёвку руками и таким образом едут навстречу друг другу. В некоторый момент сила натяжения выпрямленной (то есть не провисающей) между школьниками верёвки становится равной нулю. После этого они продолжают «выбирать» верёвку так, что она движется относительно первого физика со скоростью $u_1 = 1$ м/с, а относительно второго — со скоростью $u_2 = 0.6$ м/с. Масса первого школьника $m_1 = 60$ кг, а масса второго школьника $m_2 = 78$ кг. Найдите модуль скорости каждого физика и горизонтального участка верёвки относительно озера.

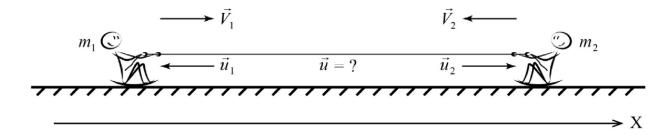
Максимум за задачу 10 баллов.

Возможное решение

Пусть V_I и V_2 - скорости первого и второго физиков относительно озера, u_I и u_2 -

скорости верёвки относительно физиков, \boldsymbol{u} - скорость верёвки относительно озера.

Запишем закон сохранения импульса системы в векторном виде:



$$m_1 \vec{V}_1 + m_2 \vec{V}_2 = 0 \tag{1}$$

Запишем для верёвки закон сложения скоростей:

$$\vec{u} = \vec{u}_1 + \vec{V}_1 \tag{2}$$

$$\vec{u} = \vec{u}_1 + \vec{V}_1 \tag{3}$$

Запишем теперь закон сложения скоростей (2) и (3) в проекции на ось X (учтём, что направление и заранее не известно):

$$u_x = -u_1 + V_1$$
 (4)
 $u_x = u_2 - V_2$ (5)

Из (1) следует, что $m_1V_1-m_2V_2=0$. Тогда с учётом (4) и (5) получаем:

$$V_1 = \frac{m_2(u_1 + u_2)}{m_1 + m_2} \approx 0.9 \text{m/c};$$
 $V_2 = \frac{m_1(u_1 + u_2)}{m_1 + m_2} \approx 0.7 \text{m/c};$ $u = |V_1 - u_1| \approx 0.1 \text{m/c}.$

Баллы	Правильность (ошибочность) решения		
10	Полное верное решение		
2	Записана формула $m_1V_1 - m_2V_2 = 0$		
1,5	Записана формула $u_x = -u_1 + V_1$.		
1,5	$ $ Записана формула $u_x = u_2 - V_2$		
1,5	Записана формула $V_1 = \frac{m_2(u_1+u_2)}{m_1+m_2} pprox 0,9$ м/с		
1,5	Записана формула $V_2 = \frac{m_1(u_1 + u_2)}{m_1 + m_2} \approx 0.7 \text{м/c};$		
2	Записана формула $u = V_1 - u_1 \approx 0,1$ м/с.		
0	Решение отсутствует		

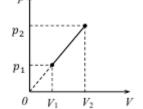
Задание 3

При нагревании трёх молей гелия давление p газа изменялось прямо пропорционально его объёму V (p=aV, где a — некоторая неизвестная константа). На сколько градусов поднялась температура гелия, если газу передали количество теплоты $Q=300~\rm{Д}ж$?

Максимум за задачу 10 баллов.

Возможное решение

Запишем уравнения Клапейрона-Менделеева для начального и конечного состояний газа:



$$p_1V_1=\nu RT_1,$$

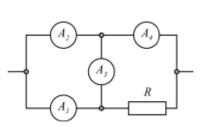
$$p_2V_2=\nu RT_2.$$

Совершенная газом работа численно равна площади под графиком (см. рис.): $A=\frac{1}{2}(p_2V_2-p_1V_1)=\frac{1}{2}\nu R\Delta T$. Из первого начала термодинамики следует $Q=\Delta U+A=\frac{3}{2}\nu R\Delta T+\frac{1}{2}\nu R\Delta T=2\nu R\Delta T$, значит $\Delta T=\frac{Q}{2\nu R}=6$ К

Баллы	Правильность (ошибочность) решения	
10	Полное верное решение	
2	Записаны формулы $p_1V_1 = \nu RT_1, \ p_2V_2 = \nu RT_2.$	
3	Записана формула $A = \frac{1}{2} \nu R \Delta T$	
1	3 аписана формула $Q = \Delta U + A$	
2	Записана формула $\Delta U = \frac{3}{2} \nu R \Delta T$	
2	Записана формула $\Delta T = \frac{Q}{2 \nu R} = 6 K;$	
0	Решение отсутствует	

Задание 4

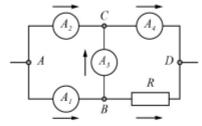
Электрическая цепь состоит из резистора с сопротивлением R и четырёх одинаковых амперметров с внутренними сопротивлениями r. Показания амперметра A_1 равны $I_1=3$ A и A_2 равны I_2



= 5 А. Найдите отношения сопротивлений R/r.

Возможное решение

На рисунке стрелками указаны выбранные нами положительные направления токов в ветвях цепи.



Поскольку в контуре АСВ отсутствуют источники ЭДС, то

$$I_2r = I_3r + I_1r \implies I_3 = I_2 - I_1 = 2 \text{ A}.$$

Запишем закон сохранения электрического заряда для узла В:

$$I_1 = I_3 + I_R \implies I_R = I_1 - I_3 = 1 \text{ A}.$$

Аналогично находим ток $I_4 = I_2 + I_3 = 7$ А.

Для контура CDB, в котором также отсутствуют источники ЭДС:

$$I_3r + I_4r = I_RR \implies \frac{R}{r} = \frac{I_3 + I_4}{I_R} = 9.$$

Критерии оценивания

1. $I_2r = I_3r + I_1r$	2	балла
2. $I_1 = I_3 + I_R$	2	балла
3. $I_4 = I_2 + I_3$	2	балла
4. $I_3r + I_4r = I_RR$	2	балла
5. $\frac{R}{r} = 9$	2	балла

Максимум за задачу 10 баллов.

Баллы	Правильность (ошибочность) решения			
10	Полное верное решение			
2	Записаны формулы $p_1V_1 = \nu RT_1, \ p_2V_2 = \nu RT_2.$			
3	Записана формула $A = \frac{1}{2} \nu R \Delta T$			
1	3 аписана формула $Q = \Delta U + A$			

2	Записана формула $\Delta U = \frac{3}{2} \nu R \Delta T$
2	Записана формула $\Delta T = \frac{Q}{2 \nu R} = 6 \text{K};$
0	Решение отсутствует

Задание 5

Эффект Холла. Электроны являются носителями тока металлах Если образец полупроводниках n-типа. током (B данном случае прямоугольный кусочек плёнки полупроводника n-типа) помещён в магнитное поле и через него протекает электрический ток, то на движущиеся электроны действует сила Лоренца F = evB, перпендикулярная скорости \vec{v} электрона и вектору \vec{B} магнитной индукции (рис. 1).

Рис. 1

Здесь v — средняя скорость дрейфа электронов, связанная с проходящим током I и прямо пропорциональная напряженности электрического поля \vec{E} в направлении этого тока: $v = \mu E$, где коэффициент пропорциональности μ называется подвижностью электронов.

Из-за действия на электроны силы Лоренца (на рисунке она направлена в сторону левой грани), происходит разделение зарядов и появляется поперечное электрическое поле с напряженностью Ex. Возникновение этого поля при протекании тока в образце, помещенном в магнитное поле, называют эффектом Холла. Перемещение электронов в направлении левой грани прекращается, когда силу Лоренца уравновешивает электрическая сила eE_x :

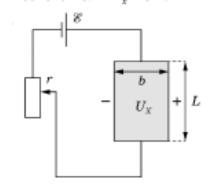
 $evB = eE_x$.

В установившемся режиме напряжённость поперечного электрического поля $E_x = vB$.

Ниже описан эксперимент, в котором эффект Холла используется для исследования свойств полупроводника. Ток создаёт источник с ЭДС $\mathcal{E}=10$ В и малым внутренним сопротивлением. Величина магнитной индукции B=1,0 Тл. Для изменения тока применяют переменный резистор, а вольтметром измеряют напряжение U_x между боковыми гранями в направлении, перпендикулярном магнитному полю и направлению протекающего тока.

Рис. 2

Размеры полупроводникового образца: толщина d=1,0 мкм, ширина b=5,0 мм, длина L=1,0 см. Заряд электрона $e=1,6\cdot 10$ -19 Кл.



В таблице представлена зависимость U_x от сопротивления r переменного резистора.

<i>r</i> , кОм	2,5	2,0	1,5	1,0	0,5	0,0
U_x , B	1,2	1,4	1,6	1,8	2,1	2,5

Задание

- 1. Выразите U_x через силу тока I в образце, концентрацию n электронов проводимости и физические величины, приведенные в описании эксперимента $(\mathcal{E}, B, d, b, L, e)$.
- 2. Выразите сопротивление R и удельное сопротивление ρ образца через его размеры, подвижность μ и концентрацию n электронов проводимости.
- 3. Используя уравнения, полученные в п.п. 1, 2, выразите U_x через концентрацию n и подвижность μ электронов проводимости, сопротивление r и физические величины, приведенные в описании эксперимента.
- 4. Используя выражение, полученное в п. 3, при помощи графического анализа экспериментальных данных определите для исследуемого полупроводника:
- а) концентрацию n электронов проводимости;
- б) их подвижность μ ;
- в) удельное сопротивление ρ .

Опишите выбранный для этого способ обработки данных.

Возможное решение (С. Кармазин).

1. Выразим U_x через силу тока I в образце. Заметим, что при скорости дрейфа υ за единицу времени через сечение образца bd проходит заряд электронов

проводимости из объёма vbd, что при концентрации n электронов проводимости создаёт силу тока I=envbd. Для разности потенциалов $U_x=bvB$, поэтому

$$U_x = \frac{IB}{end}. (1)$$

2. Выразим сопротивление R образца между гранями, отстоящими друг от друга на расстоянии L, через подвижность μ и концентрацию n электронов проводимости. Так как $v=\mu E$, где E=U/L, где U — напряжение между сечениями бруска, то скорость дрейфа электронов $v=\mu U/L$. Поскольку сила тока $I=envbd=\frac{en\mu Ubd}{r}$, то из равенства R=U/I имеем

$$R = \frac{L}{en\mu Ub}. (2)$$

Соответственно, для удельного сопротивления получим

$$\rho = \frac{1}{en\mu} \tag{3}$$

3. Запишем закон Ома для замкнутой цепи $E = \frac{I}{R+r}$, где R сопротивление образца.

Подставляя в это уравнение выражение $I = \frac{U_x end}{B}$, следующее из (1), и выражение (2) для R, получим

$$r + R = \frac{EB}{U_x end}$$
 или
$$\frac{EB}{U_x} = end \cdot r + \frac{L}{\mu B}$$
(4)

Мы получили, что обратное напряжение Холла линейно зависит от сопротивления переменного резистора r. Это позволяет применить графическую обработку (4).

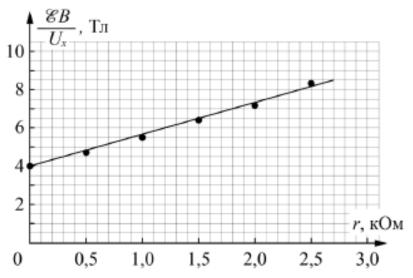
По угловому коэффициенту end можно найти концентрацию n, а по свободному члену $\frac{L}{uB}$ — подвижность μ .

Таблицу из условия преобразуем к виду:

r, кОм	0,0	0,5	1,0	1,5	2,0	2,5
\mathcal{E} В/ $U_{\rm x}$, Тл	4,0	4,8	5,6	6,3	7,1	8,3

EB

Наносим на график с осями $\overline{U_*}$ и r точки, отвечающие измерениям, и проводим наиболее близкую к ним прямую.



Для нашей прямой получаем $\frac{L}{\mu b} = 4,1 \, \text{Тл}$, откуда

$$\mu = \frac{1,0 \cdot 10^{-2}}{5,0 \cdot 10^{-3} \cdot 4,1} \left(\frac{\text{m}^2}{\text{c} \cdot \text{B}} \right) = 4,9 \cdot 10^3 \left(\frac{\text{cm}^2}{\text{c} \cdot \text{B}} \right).$$

Угловой коэффициент $end = \frac{8,2-4,0}{2,5\cdot 10^3} \left(\frac{T\pi}{O_M}\right) \approx 1,7\cdot 10^{-3} \left(\frac{T\pi}{O_M}\right)$, откуда

$$n = \frac{1,7 \cdot 10^{-3}}{1,6 \cdot 10^{-19} 1,0 \cdot 10^{-6}} \, \mathrm{m}^{-3} = 1,06 \cdot 10^{22} \, \mathrm{m}^{-3}, \qquad \rho = \frac{1}{en\mu} = 1,2 \cdot 10^{-3} \, \mathrm{Om} \cdot \mathrm{m}.$$

N_2	Задача 1.11.4. Критерии оценивания (14 баллов)	Баллы
1	Полный вывод выражения для напряжения Холла: $U_x = Bvb = Bl/(end)$. При неполном выводе	2
a)	Выражена скорость дрейфа через силу тока: $v = I/(bden)$ (1 балл)	
б)	Выражение для напряжения Холла: $U_x = Bvb = BI/(den)$ (1 балл)	
2	Выражение для сопротивления $r + R = \mathcal{E}/I$ (0,5 балла)	1
	и $r + R = \mathcal{E}B/(U_x den)$ (0,5 балла)	
3	Выражение сопротивления и удельного сопротивления через подвижность и концентрацию	3
a)	Записано соотношение $v = \mu E = \mu U/L$ (1 балл)	
б)	Записано соотношение $I = envbd = en\mu Ebd = en\mu Ubd/L$ (1 балл)	
в)	Получение выражения для $R = L/en\mu bd$ (0,5 балла)	
г)	Получение выражение для удельного сопротивления $\rho = 1/en\mu$ (0,5 балла)	
4	Сделан вывод о линейной зависимости r и $1/U_{\rm x}$ из постоянства R как основы	0,5
	метода нахождения характеристик полупроводника	
5	Получение соотношения (или любой аналог) $\mathcal{E}B/U_x = denr + L/(\mu b)$	0,5
6	Преобразование таблицы 1 в таблицу 2 с величиной, пропорциональной $1/U_x$, как функции r .	1
7	Указано, что по коэффициенту при переменной и свободному члену в ли-	1
	нейной зависимости можно найти n и μ (алгебраически или по графику)	
8	Установление параметров линейной зависимости (свободного члена L/µb)	1
9	Установление параметров линейной зависимости (коэффициента den)	1
10	Подвижность μ попала в интервале $(0,47 \div 0,51)$ м ² /с·В;	1
	в интервале $(0,45 \div 0,53)$ м ² /с $(0,5$ балла)	
11	Концентрация n в интервале $(0.8 \div 1.2)$ 10^{22} $1/\text{м}^3$	1
	в интервале $(0,6 \div 1,4) \ 10^{22} \ 1/\text{м}^3$ (0,5 балла)	
12	ρ в интервале (1,1÷1,4)·10 ⁻³ Ом-м	1
	в интервале $(0.9 \div 1.6) \cdot 10^{-3}$ Ом·м (0.5 балла)	